A nonparametric Bayesian alternative to spike sorting.

نویسندگان

  • Frank Wood
  • Michael J Black
چکیده

The analysis of extra-cellular neural recordings typically begins with careful spike sorting and all analysis of the data then rests on the correctness of the resulting spike trains. In many situations this is unproblematic as experimental and spike sorting procedures often focus on well isolated units. There is evidence in the literature, however, that errors in spike sorting can occur even with carefully collected and selected data. Additionally, chronically implanted electrodes and arrays with fixed electrodes cannot be easily adjusted to provide well isolated units. In these situations, multiple units may be recorded and the assignment of waveforms to units may be ambiguous. At the same time, analysis of such data may be both scientifically important and clinically relevant. In this paper we address this issue using a novel probabilistic model that accounts for several important sources of uncertainty and error in spike sorting. In lieu of sorting neural data to produce a single best spike train, we estimate a probabilistic model of spike trains given the observed data. We show how such a distribution over spike sortings can support standard neuroscientific questions while providing a representation of uncertainty in the analysis. As a representative illustration of the approach, we analyzed primary motor cortical tuning with respect to hand movement in data recorded with a chronic multi-electrode array in non-human primates. We found that the probabilistic analysis generally agrees with human sorters but suggests the presence of tuned units not detected by humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Non-parametric Bayesian Framework for Spike Sorting Using Optimal Quantization

This paper describes an approach that performs spike sorting by a nonparametric density estimation technique under a Bayesian framework. The technique is based on an optimal quantization method. We performed experiments on simulated and real spike signals. The results are comparable with what is reported in the literature.

متن کامل

On the Analysis of Multi-Channel Neural Spike Data

Nonparametric Bayesian methods are developed for analysis of multi-channel spike-train data, with the feature learning and spike sorting performed jointly. The feature learning and sorting are performed simultaneously across all channels. Dictionary learning is implemented via the beta-Bernoulli process, with spike sorting performed via the dynamic hierarchical Dirichlet process (dHDP), with th...

متن کامل

A spike sorting framework using nonparametric detection and incremental clustering

We introduce a statistical computing framework to address two important issues in spike sorting: flexible spike shape modeling and realtime spike clustering. In this framework, spikes are detected based on a nonparametric shape distribution; detected spikes are further grouped by an incremental clustering algorithm involving the second-order statistics–covariance matrix. We performed experiment...

متن کامل

Nonparametric Bayesian Models for Neural

of “Nonparametric Bayesian Models for Neural Data” by Frank Wood, Ph.D., Brown University, May 2007. Many neural data analyses can be cast as latent variable modeling problems. Specific examples include spike sorting and neurological data analysis. Challenges in spike sorting include figuring out how many neurons generated a set of recorded action potentials and, further, which neuron generated...

متن کامل

A Brief Look into Spike Sorting Methods

Spike sorting is a class of techniques used in the analysis of electrophysiological data. Studying the dynamics of neural activity via electrical recording relies on the ability to detect and sort neural spikes recorded from a number of neurons by the same electrode. This article reviews methods for detecting and classifying action potentials, a problem commonly referred to as spike sorting.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuroscience methods

دوره 173 1  شماره 

صفحات  -

تاریخ انتشار 2008